Biotech Strategy Blog

Commentary on Science, Innovation & New Products with a focus on Oncology, Hematology & Cancer Immunotherapy

Posts from the ‘Diabetes’ category

Sometimes you get lucky before a conference and catch an interview with a thought leader ahead of time when it’s more relaxed and less fraught with all the demands of meetings etc while there.

rick young

Dr R Young, Source: WI

That good fortune happened to me on the Friday before the recent AACR conference in San Diego, when I recorded an interview with Dr Richard Young, (Whitehead Institute & MIT and scientific co-founder of Syros), who was giving a plenary talk on the Sunday at AACR entitled, “Transcriptional and Epigenetic Control of Tumor Cells.”

Epigenetics and transcriptional changes are fascinating concepts to me because they get right to the heart of what’s going on deep in the oncogenes and how they control processes in cancer. Clearly, in simplistic terms, if we can understand how things change and evolve, then we can potentially devise better strategies to overcome them. Instead of targeting a protein kinase with a small molecule or a cell surface antigen with a monocloncal antibody, this is an altogether different approach. Protein-protein interactions such as MYC, RUNX1, p53/TP53 etc have long been the bugbear and frustration of many good researchers, precisely because they are challenging to target with conventional approaches.

So what’s new and why am I really excited about these new developments?

To find out more, you can sign in or sign up below.

Contrary to popular opinion, innovation is not dead in the biomedical industry, as evidenced by news of a novel drug-delivery system published as a Rapid Publication in Science Translational Medicine (STM) on February 16, 2012.

The paper from Robert Farra of MicroCHIPS, Inc. and research collaborators, describes a first-in-human testing of a wirelessly controlled drug delivery microchip.

Farra et al., report the results of a clinical trial with 8 women in whom microchips were implanted for 103 days. The data showed that the pharmacokinetic profile of microgram-quantities of the anti-osteoporosis drug, teriparatide (FORSTEO), delivered by the microchip was similar to subcutaneous injections.  However, the device did fail in one of the 8 women, so data is only reported for 7 patients, a very small patient sample.

Picture Credit: MicroCHIPS, Inc.

The drug delivery device is an array of 600-nL micro reservoirs in which the drug is stored, that is associated with a 13.0 mm x 5.4mm x 0.5mm silicon chip.

The microchip was implanted beneath the skin (subcutaneously) in the abdomen by creating a 2.5cm incision, performed during an outpatient visit.

This paper is also interesting for its use of telemedicine. A remote operator was able to establish a wireless link and send instructions directly to the implant on dosing schedule as well as receive information back on operation of the chip.

John T. Watson, Professor of Bioengineering at the University of California San Diego  commented in the accompanying editorial that:

“The microchip represents more than 10 years of engineering design and development efforts to arrive at a programmable, implantable device for subcutaneous release of a therapeutic agent in discrete doses.”

Multiple engineering design advances were made along the way.

He also noted the results from the quality-of-life surveys administered during the trial; the majority of women stating they often forgot they had the device implanted and would readily consent to a fresh implant if needed.

Innovations in drug delivery offer hope of an improved quality of life to patients with chronic disease who require daily injections.  In 2010, there were approximately 50,000 teriparatide users, not an insignificant market opportunity.  People with diabetes who require daily injection of insulin is another potential market that springs to mind.

The first-in-human results reported in Science Translational Medicine show promise and the potential of a novel implanted wireless drug delivery system.

However, many questions remain unanswered by this research including the reliability & durability of the microchip device, given that it failed in 1 out of 8 women implanted.

Further work on validating the technology, and confirming its safety, reliability and efficacy in a larger sample size will be needed before it can obtain regulatory approval.

References

ResearchBlogging.orgFarra, R., Sheppard, N., McCabe, L., Neer, R., Anderson, J., Santini, J., Cima, M., & Langer, R. (2012). First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip Science Translational Medicine DOI: 10.1126/scitranslmed.3003276

Watson, J. (2012). Re-Engineering Device Translation Timelines Science Translational Medicine DOI: 10.1126/scitranslmed.3003687

The Lancet yesterday published news of the world’s first tissue engineered implant of a urethra (the tube that carries urine out of the body from the bladder).

This research by Atlantida Raya-Rivera and colleagues at the Wake Forest Institute for Regenerative Medicine and Metropolitan Autonomous University in Mexico is another step towards when we may be able to regenerate a wide range of body parts. This would solve many of the donor shortages for livers and kidneys that exist today.

In their paper, Raya-Rivera describe how they took a tissue biopsy from five Mexican boys and by then seeding these cells on a scaffold, grew new urethras. These were subsequently transplanted into the boys (aged 10-14) between 2004-2007.  The results show that the tissue engineered urethras remained functional for up to 6 years, appeared normal within 3 months of implantation and allowed a urine median end maximum urinary flow rate between 16-28 mL/s.  To put this in context, the average urine flow rate of males aged 8-13 is 12mL/s, suggesting that the tissue engineered urethras functioned well.

For those who suffer from complex urethral problems as a result of disease, infection or congenital defects, this research offers the prospect of a new treatment option.  More research is required with a larger sample size to validate the findings, and to confirm that no strictures are seen long-term after reconstruction.

Ongoing research at the Wake Forest Institute of Regenerative Medicine (WFIRM) into engineering human livers, kidneys, pancreatic beta cells and heart valves suggests that, if successful, regenerative medicine will have a major impact on the treatment of future diseases.  I can imagine a world for people with diabetes where new pancreatic insulin producing cells could be engineered and implanted.

The potential to replace non-functional or diseased organs and tissues with a replacement tissue engineered new one (like replacing a car part) will have a tremendous impact on the pharmaceutical and biotechnology industry. Blockbuster drug franchises could disappear overnight.  Regenerative medicine is an exciting area to watch over the next few years.

References

This post was chosen as an Editor's Selection for ResearchBlogging.orgRaya-Rivera, A., Esquiliano, D., Yoo, J., Lopez-Bayghen, E., Soker, S., & Atala, A. (2011). Tissue-engineered autologous urethras for patients who need reconstruction: an observational study The Lancet DOI: 10.1016/S0140-6736(10)62354-9

I’m off to a conference in Orlando today, so thought it might be interesting to follow-up on my previous post about the emerging medical device/biotechnology cluster around Austin, Texas to think about what’s happening in Central Florida.

Orlando is most well-known for Disney and theme parks, and major conferences (see my post on attending the ASH annual meeting in Orlando last year). However, the opening of a new medical school, children’s hospital and medical research institute will undoubtedly lead to biotechnology and biomedical companies considering start-ups in the surrounding area.

Florida, like Texas, offers no personal taxation and Orlando is also well connected for flight connections throughout the country.

Orlando, in my opinion, is further behind Austin, and to some degree all cities with a medical school, in it’s attempt to drive research and innovation.  Whether Central Florida can establish a critical mass of companies and sufficient industry talent is the challenge, especially as multiple regions across the United States are also competing for biotechnology $.

However, even if Orlando does not become a major biotechnology cluster, it is more likely to become a major center for clinical and biomedical research.

In April 2009, the La Jolla based Sanford-Burnham Medical Research Institute opened a new research facility at Lake Nona in Orlando.  It is home to 900 scientists undertaking R&D on drug discovery, stem cells, nanomedicine and translational research.

One of research areas it is focusing on is diabetes and obesity, or diabesity as it is rapidly becoming known, an area that is rapidly reaching pandemic proportions in the United States. A symposium on Frontiers in Biomedical Science: Metabolic Networks and Disease Signatures will be held on March 11.

Luke Timmerman’s post on Xconomy about the Institute and the $50M gift it received last year to change its name is well worth a read.  In another post, he also raises the question of whether biotechnology companies can make money going after diabesity, notwithstanding the market opportunity? Need and market opportunity don’t always translate into valid targets for drug development, especially when many of the issues to do with diabetes and obesity relate to lifestyle and food content.

The Sanford-Burnham Medical Research Institute is the cornerstone of a cluster of bio-medical research companies and healthcare institutions, including the M.D. Anderson Orlando Cancer Research Institute, the new University of Central Florida (UCF) College of Medicine that opened in 2009, and Nemours Children’s Hospital that will open in 2012.

I think it will take several years before we can see if a significant biotechnology cluster grows up around these research and medical institutions.  Whether Central Florida and Orlando can grow into a leading biotechnology region remains to be seen.

The December 17, 2010 issue of “Science” has the catchy of title of “Insights of the Decade”, one of which is an article by Jennifer Couzin-Frankel, “Inflammation Bares a Dark Side”, that describes the ubiquitous role of inflammation. She concludes that:

“Mediating inflammation in chronic diseases is a new frontier, its success is still uncertain.”

Inflammation has been shown to play an important role in multiple chronic illnesses such as cancer, and in type 2 diabetes it promotes insulin resistance and the death of pancreatic beta cells.  In 2007, Marc Donath and colleagues published a landmark study in the New England Journal of Medicine where he used the drug anakinra, in patients with type 2 diabetes, to block interleukin-1 (IL-1), a cytokine that mediates the inflammatory response. The conclusion of the paper was that:

“The blockade of interleukin-1 with anakinra improved glycemia and beta-cell secretory function and reduced markers of systemic inflammation.”

The finding that diabetes patients whose inflammatory response was blocked did better, has led several companies to work on drug development in this area.

One of these is the biotechnology company, Xoma, whose stocked jumped 200% in the week before Christmas.  Although there was no press release or announcement of any company news, it looks like investors decided to take a gamble that the phase 2 trial results for Xoma 052 in type 2 diabetes will be positive.  As often happens, the wisdom of the crowd, led to others joining the share buying frenzy.

Source: Google Finance. Xoma had previously announced on November 4, 2010 (emphasis added) that:

Enrollment completed in Phase 2a trial of XOMA 052 in patients with Type 2 diabetes:

This randomized, placebo-controlled trial, in which 74 patients were enrolled, is designed to evaluate extended biologic activity and safety of XOMA 052. Outcomes will include diabetes measures such as hemoglobin A1c, or HbA1c, and fasting blood glucose, or FBG, and C-reactive protein, or hsCRP, a biomarker of inflammation associated with cardiovascular risk. Interim results from the first three months of treatment in this six month trial are expected to be announced in the first half of January 2011.

Enrollment completed in Phase 2b trial of XOMA 052 in patients with Type 2 diabetes: This randomized, placebo-controlled dose-ranging trial enrolled 420 patients and is designed to further evaluate the safety and efficacy of XOMA 052 dosed once monthly compared to placebo. The results will include data on measurements of HbA1c, FBG and hsCRP. Top line results are expected to be announced in the first quarter of 2011.

Xoma 052 is a high affinity monoclonal antibody that targets the inhibition of IL-1 beta.  Its ultra-high affinity allows for monthly dosing and lower dose levels which supports patient compliance in chronic diseases. Positive phase 2 results for Xoma 052 in Behcet’s Uveitis was presented in November to the American College of Rheumatology.

According to the November 2010 Xoma Corporate Presentation, the overall market size for diabetes is $22B, of which the IL-1 share is $7B, raising the possibility that Xoma 052 could be a blockbuster if shown to be safe and effective.

Source: Xoma November 2010 Corporate Presentation

Looking at the above, perhaps the rush to buy Xoma stock before the holidays, was perhaps not as much of a gamble as one might think. Xoma 052 is certainly a product to watch this year.

2 Comments
error: Content is protected !!