Biotech Strategy Blog

Commentary on Science, Innovation & New Products with a focus on Oncology, Hematology & Cancer Immunotherapy

Posts tagged ‘Marketing Strategy’

Following on from my recent blog post on emerging treatments in osteoporosis, one of new approaches in development is the inhibition of cathepsin-K.

Cathepsin-K inhibition is a novel approach to osteoporosis treatment and Merck’s odanacatib is leading the way in this new class of drugs. It is currently in phase III development, with 16,716 subjects enrolled (NCT00529373).

Cathepsins are lysosomal proteases. Cathepsin K (Cat-K) is a cysteine protease that plays an important role in the function of osteoclasts (the cells responsible for bone destruction). Cat-K acts to degrade bone collagen. By inhibiting it, the removal of bone matrix proteins by osteoclasts is reduced.

However, Cat-K inhibitors such as odanacatib do not kill off the osteoclast, but allow it to still produce chemokines and growth factors such as WNT that are responsible for the effective function of osteoblasts (the cells responsible for bone formation).

The net result is that Cat-K inhibitors reduce bone resorption.

Phase II clinical trial results for odanacatib presented at the American Society of Bone and Mineral Research (ASBMR) annual meeting last year (abstract #1247),  showed an increase in spine and hip bone mineral density (BMD) after four years of follow-up, suggesting that odanacatib use leads to increased bone strength. As reported by Merck in their press release:

In postmenopausal women who received odanacatib 50 mg weekly for four years (N=13), an increase in BMD of 2.8 percent at the lumbar, and 2.7 percent at the hip were demonstrated between years three and four of treatment. Over four years of treatment, these women had increases in lumbar spine (10.7 percent) and hip (8.3 percent) BMD from baseline.

If you are looking for further information on the science, the February 2011 issue of “The Journal of Bone and Mineral Research” has several papers on odanacatib, osteocytes and cathepsin K inhibitors.

Merck has 16,716 subjects enrolled in their phase III trial for odanacatib, and July 2012 is indicated as the date when data will be available for the primary end-point of reduction in fracture risk over the three year treatment period.  We can expect the phase III results shortly after that, and if positive, an FDA approval could be expected in 2013.

The development of odanacatib by Merck is clearly a strategy to combat generic alendronate, which has eroded Merck’s market share and profits for Fosamax.  Both odanacatib and generic alendronate, are once weekly doses. The timeline for a product launch for odanacatib appears to be in the late 2013/2014 period, and I am sure further clarity on this will appear from Merck nearer the time.

The challenge for odanacatib is that by 2015, analysts estimate that Amgen’s RANKL inhibitor denosumab will be a blockbuster (more than $1 billion in sales) and sales of parathyroid hormone analogues will have tripled to $1.4 billion.

Although the market opportunity in osteoporosis is likely to grow given the aging population around the world, it remains to be seen how the cost/benefit of odanacatib will stack up against the competition, and whether Merck can capitalize on this.

The February 2011 issue of Nature Reviews Drug Discovery has an interesting review by Kawai, Mödder and colleagues on “Emerging therapeutic opportunities for skeletal restoration.”

Some of the new products they discuss include:

  1. Parathyroid Hormone-Related protein (PTHRP)
  2. Cathepsin K Inhibitors: odanacatib
  3. Wnt-ß-catenin pathway targets: sclerostin, DKK1 antagonists, lithium.

The market opportunity for osteoporosis remains significant, affecting 44 million people in the United States over the age of 50, resulting in healthcare costs in excess of $15 billion a year; numbers that are set to increase with the ageing population of baby boomers.  The low bone mineral density (BMD) associated with osteoporosis results in increased risk of hip fracture, from which the mortality rate is 20-30% in the first year.

The current competitive landscape for osteoporosis includes antiresorptive agents such as the bisphosponates (alendronate, risedronate, ibandronate, zoledronic acid) that inhibit bone resorption.  These compounds reduce fracture-risk by 20-30%, but long-term safety issues remain a concern.  High doses of zoledronic acid (Zometa) has been linked to osteonecrosis of the jaw (see previous blog post).

Amgen’s new monoclonal antibody, denosumab, binds to RANK-L, thereby inhibiting its action, with the result that osteoclasts (the cells responsible for bone resorption) cannot form, function or survive.  The result of this mechanism of action is a reduction in bone loss and bone destruction.

Like zoledronic acid, denosumab also has a risk of osteonecrosis of the jaw developing.  However, one additional long-term safety issue for denosumab is the fact it suppresses TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) that is not only produced by osteoblasts (the cells responsible for bone formation), but also by immune cells.  This raises the possibility of skin and immune adverse events, which were seen in the clinical trial data.

Kawai & Mödder in their review article conclude that:

“There is still a need for therapies that reduce fracture risk beyond the level achievable with bone-resorbing agents, particularly as virtually all of the currently available drugs do not eliminate the possibility of future fractures.”

However in addition to having a market opportunity and scientific rationale, any biotechnology company looking at osteoporosis as part of their marketing strategy, must face up to the increasing ethical concerns over placebo-controlled clinical trials.  This topic was highlighted last year in the New England Journal of Medicine.

In the future there is likely to be increased pressure not to recruit subjects at high-risk of osteoporosis (T score less than -2.5) into placebo-controlled trials, thus increasing the costs, number of patients and time to bring new products to market.  In addition, the regulatory barriers to entry are becoming higher, given that regulatory agencies require a reduction in fractures over 3 years to establish the efficacy of a new drug.  This ultimately results in the need for large, expensive, and long phase III clinical trials.

In forthcoming posts, I will discuss the opportunities for market entry by new osteoporosis drugs targeting the Wnt- ß-catenin pathway, Cathepsin K inhibitors and Parathyroid hormone-related protein.

1 Comment

The December 17, 2010 issue of “Science” has the catchy of title of “Insights of the Decade”, one of which is an article by Jennifer Couzin-Frankel, “Inflammation Bares a Dark Side”, that describes the ubiquitous role of inflammation. She concludes that:

“Mediating inflammation in chronic diseases is a new frontier, its success is still uncertain.”

Inflammation has been shown to play an important role in multiple chronic illnesses such as cancer, and in type 2 diabetes it promotes insulin resistance and the death of pancreatic beta cells.  In 2007, Marc Donath and colleagues published a landmark study in the New England Journal of Medicine where he used the drug anakinra, in patients with type 2 diabetes, to block interleukin-1 (IL-1), a cytokine that mediates the inflammatory response. The conclusion of the paper was that:

“The blockade of interleukin-1 with anakinra improved glycemia and beta-cell secretory function and reduced markers of systemic inflammation.”

The finding that diabetes patients whose inflammatory response was blocked did better, has led several companies to work on drug development in this area.

One of these is the biotechnology company, Xoma, whose stocked jumped 200% in the week before Christmas.  Although there was no press release or announcement of any company news, it looks like investors decided to take a gamble that the phase 2 trial results for Xoma 052 in type 2 diabetes will be positive.  As often happens, the wisdom of the crowd, led to others joining the share buying frenzy.

Source: Google Finance. Xoma had previously announced on November 4, 2010 (emphasis added) that:

Enrollment completed in Phase 2a trial of XOMA 052 in patients with Type 2 diabetes:

This randomized, placebo-controlled trial, in which 74 patients were enrolled, is designed to evaluate extended biologic activity and safety of XOMA 052. Outcomes will include diabetes measures such as hemoglobin A1c, or HbA1c, and fasting blood glucose, or FBG, and C-reactive protein, or hsCRP, a biomarker of inflammation associated with cardiovascular risk. Interim results from the first three months of treatment in this six month trial are expected to be announced in the first half of January 2011.

Enrollment completed in Phase 2b trial of XOMA 052 in patients with Type 2 diabetes: This randomized, placebo-controlled dose-ranging trial enrolled 420 patients and is designed to further evaluate the safety and efficacy of XOMA 052 dosed once monthly compared to placebo. The results will include data on measurements of HbA1c, FBG and hsCRP. Top line results are expected to be announced in the first quarter of 2011.

Xoma 052 is a high affinity monoclonal antibody that targets the inhibition of IL-1 beta.  Its ultra-high affinity allows for monthly dosing and lower dose levels which supports patient compliance in chronic diseases. Positive phase 2 results for Xoma 052 in Behcet’s Uveitis was presented in November to the American College of Rheumatology.

According to the November 2010 Xoma Corporate Presentation, the overall market size for diabetes is $22B, of which the IL-1 share is $7B, raising the possibility that Xoma 052 could be a blockbuster if shown to be safe and effective.

Source: Xoma November 2010 Corporate Presentation

Looking at the above, perhaps the rush to buy Xoma stock before the holidays, was perhaps not as much of a gamble as one might think. Xoma 052 is certainly a product to watch this year.

2 Comments

This week’s New England Journal of Medicine (NEJM) has an interesting paper (Teriparatide and Osseous Regeneration in the Oral Cavity) that caught my attention on the use of teriparatide (Eli Lilly, Forteo®) in patients with chronic peridontitis, a disease that affects one in five American adults.  The total market for periodontitis services and products is estimated to grow at 6.4% to 2016, when it will be worth $1,937 m.

Teriparatide is a recombinant form of parathyroid hormone (PTH) consisting of amino acids 1-34, and is used for the treatment of osteoporosis.  In the body, PTH is the hormone that regulates the level of calcium in the blood.  Low blood calcium causes increased PTH release. The use of teriparatide has been limited by the FDA due to the risk of osteosarcoma from long-term exposure.  However, what makes it an interesting compound is its ability to stimulate osteoblasts to build bone, which is why the results from the NEJM on peridontitis are perhaps not that surprising.

As Andrew Gray in his NEJM editorial comments, because teriparatide activates bone remodelling it may have a role to play in the management of osteonecrosis of the jaw (ONJ). ONJ is a particularly nasty side effect that many breast, multiple myeloma and prostate cancer patients experience following any dental work.

Badros et al, point out in their Journal of Clinical Oncology (JCO) paper, that bone disease effects 70% of multiple myeloma patients, many of whom take a bisphosphonate such as zoledronic acid (Novartis, Zometa®) to reduce the risk of skeletal related events (SRE). Unfortunately, a few patients subsequently end up with ONJ as a serious side effect! Clinical trial results showed that ONJ occurred with a similar frequency in breast cancer patients taking denosumab (Amgen, Prolia®) as compared to zoledronic acid.

One only has to read the patient commentary available on online forums such as breastcancer.org to realize the debilitating effect that ONJ has, not to mention the severe morbidity because of lack of delayed diagnosis and lack of effective treatments.

It is unclear whether the positive results from the NEJM in peridontitis will lead to clinical trials for the treatment of ONJ in cancer patients.  Although there is an unmet need, the market is small. In the meantime, I expect that doctors will be using teriparatide off-label to treat severe ONJ, which is less than ideal.

One biotech company banking on continued interest in Forteo® is Zelos Therapeutics, whose CEO, Dr Brian MacDonald is a fellow alumni of the University of Sheffield.  Zelos have a nasal spray formulation of teriparatide (ZT-034), which they hope will be equivalent to Ely Lilly’s product (that requires a daily injection).

Source: Zelos Therapeutics. In a press release earlier this year, Dr MacDonald commented:

“We believe that formulation of teriparatide as a nasal spray with comparable efficacy and safety to Forteo represents a simple, convenient approach to dosing that will make PTH therapy a better option for many more patients.”

Zelos’ product is currently in early stage clinical trials, so it will be interesting to see how this develops. The NDA is planned for 2012.  It is certainly a valid strategy for emerging biotechnology companies to take an existing marketed product and use a new drug delivery mechanism such as Aegis Therapeutics’ Intravail® drug delivery technology to expand the market.

Human eye cross-sectional view. Courtesy NIH N...Image via Wikipedia

VEGF Trap-Eye is a formulation of VEGF Trap (aflibercept) and is an anti-angiogenic agent that can be injected into the eye to stop the proliferation of blood vessels. Regeneron (REGN) are co-developing it with Bayer (BAY) and it is currently in clinical trials for the treatment of wet Age-Related Macular Degeneration (AMD), Diabetic Macular Edema (DME) and Central Retinal Vein Occlusion (CRVO).

Phase II DME clinical trial results presented at the
Angiogenesis 2010 meeting in Miami showed the primary endpoint of a
statistically significant increase in visual acuity over 24 weeks compared to
the standard of care (laser treatment) was met.

There are high levels of vascular endothelial growth factor (VEGF) associated with DME, so the news that VEGF Trap-Eye has biological activity in this disease is positive.What makes this data promising is the fact that DME is the leading cause of blindness in adults under 50 and there are 370,000 Americans with clinically significant DME with 95,000 new cases a year.

The ability to treat DME by an eye injection, rather than use an expensive laser will make it easier to treat the disease. It will be interesting to see what how the cost of treatment with VEGF Trap-Eye compares to laser therapy procedures, should the agent make it to market.

The recent pricing issue faced by Genentech with its VEGF inhibitors Lucentis
(eye indications) and Avastin (oncologic indications) are also relevant because
Regeneron are developing VEGF-Trap in cancer with it’s partner sanofi-aventis
(a client).

For VEGF Trap-Eye, Regeneron retains all U.S. marketing
rights, while Bayer has rights to market ex-US in return for a 50/50 profit
share with Regeneron.The results so far look promising and aflibercept looks like an interesting agent well worth watching as the development moves forward.

Reblog this post [with Zemanta]

error: Content is protected !!