Biotech Strategy Blog

Commentary on Science, Innovation & New Products with a focus on Oncology, Hematology & Cancer Immunotherapy

Posts tagged ‘Nanotechnology Innovation’

Biotech Strategy Blog is 1 today!  I can’t believe that a year has gone by so quickly!  Before moving on to year 2, I thought a brief review might be interesting.

What have been the top posts on Biotech Strategy Blog this past year?

In terms of total visitors per post:

  1. Results from NEJM Lucentis v Avastin AMD CATT clinical trial
  2. AUA Results from PIVOT study show no benefit from radical prostatectomy in low risk early stage patients
  3. ASCO 2011 Cabozantinib (XL184) may be an exciting new prostate cancer drug
  4. Merck’s capthepsin-K inhibitor odanacatib in osteoporosis
  5. Update from AACR on new prostate cancer drugs to watch

For those who like metrics:

  • Highest number of reads per month was in May (19,927)
  • Year to date there have been 79,179 visitors
  • Most visited day was September 22, 2011 (2136 reads)

What have been some of the other posts that I enjoyed writing about?

My top 5 (not in rank order) would be:

  1. Alpharadin will be new treatment option for prostate cancer
  2. Patient advocacy session at European Hematology Assocation EHA Congress shows impact of drug adherence on outcome
  3. How nanotechnology may revolutionize the detection of traumatic brain injury using a sensor that changes color
  4. Innovation in Nanotechnology will lead to improved drug delivery, diagnostics & imaging
  5. Insights of the decade

Finally, I have produced 4 videos that you can watch on the biotechstrategy channel on YouTube.

It’s been a busy but enjoyable year. Biotech Strategy Blog is still a work in progress.  If you have enjoyed a particular series of posts or would like me explore a topic or theme in the future, do email me or post a comment.

Thanks to Christian Assad (@Christianassad), Cardiology Fellow at TMHS/UTMB, for tweeting the press release from researchers at the Technical University in Munich (Technische Universitaet Munchen) on how artificial nanoparticles may influence heart rate:

Using a Langendorff heart, which is an isolated heart from an animal, flushed with a nutrient solution instead of blood, researchers were able to show that certain nanoparticles caused an increased heart rate, cardiac arrhythmia and modified ECG.

Researchers hypothesized that nanoparticles cause the release of noradrenaline. However, there is no clinical data associated with the press release that can be analyzed, so the implications of this research are limited.

In particular, there is no discussion of the extent to which the nanoparticles tested with the heart model are in fact used for drug delivery.  The press release mentions the team used nanoparticles made of titanium dioxide, silicon dioxide and carbon black. These are commonly found in sun screens and industrial products. The extent to which these might be likely to find their way to a human heart is questionable.

Nanoparticles are increasingly being used for drug delivery, yet safety concerns persist, so having an animal model of the heart could be helpful to investigate the effect of the artificial nanoparticles on an organ.

However, more research is needed to validate this model with nanoparticles that are in fact used for human drug delivery.

The highlight of the recent Association of Health Care Journalists (AHCJ) annual meeting in Philadelphia (Health Journalism 2011) for me was the presentation by Kacy Cullen from the Center for Brain Injury and Repair in the Department of Neurosurgery at the University of Pennsylvania.

© Kacy Cullen, University of Pennsylvania

Dr Cullen presented his research on blast-induced traumatic brain injury (bTBI) and the development of a nanomaterial containing photonic crystals that change color upon exposure to blast pressure.

In the same way that a radiation dosimeter badge records exposure to cumulative radiation for a hospital worker, so a helmet-mounted color badge would change color based on a soldier’s exposure to blast pressure; a common occurrence with improvised explosive devices (IED).

In a paper published in NeuroImage, Cullen and colleagues describe in detail a blast-injury dosimeter (BID) made from photosensitive polymers that is like a colored sticker.  This nanomaterial contains microscopic, diamond-like photonic crystals, whose ability to refract light is damaged in a precise way by the pressure from explosive blasts.

The result is a change in color that is related to the degree of pressure and blast intensity. What’s more because the photonic crystals are structurally damaged by the blast, further exposure leads to more widespread microstructural alterations and a further change in color.  In essence, the crystals have a memory for cumulative blast exposure.

Why is this important?

Many soldiers are exposed to blasts, but show no overt symptoms of traumatic brain injury.  Research has shown that repeated hits to the helmet of a football player can lead to brain injury without the obvious signs of a concussion.  Traumatic brain injury as a result of repeated exposure to blasts may also lead to mild cognitive impairment and the possibility of increased risk for dementia, Alzheimer’s disease later in life.  This has been seen in NFL players.

The research by Cullen and colleagues is still in the early stages of development.  In their paper they acknowledge some of the next steps such as calibrating the color changes to levels of blast exposure, and correlating these with traumatic brain injury.  Any blast injury dosimeter will also need to be field tested.

However, this work is promising and an example of how nanotechnology may impact the detection and diagnosis of those soldiers at risk of traumatic brain injury.

War related scientific research often leads to civilian applications. In the future, I could see nanotechnology stickers that change color with cumulative impact on the helmets of NFL, college or high school football players.

You can read more about this innovative research on how color changing photonic crystals detect blast exposure in the journal NeuroImage.

Update June 30, 2011

If you are interested in the exciting and innovative research being undertaken by Kacy Cullen and his team, there is now a website for The Cullen Laboratory and their work on Neural Engineering in Neurotrauma.

ResearchBlogging.orgCullen, D., Xu, Y., Reneer, D., Browne, K., Geddes, J., Yang, S., & Smith, D. (2011). Color changing photonic crystals detect blast exposure NeuroImage, 54 DOI: 10.1016/j.neuroimage.2010.10.076

error: Content is protected !!