Biotech Strategy Blog

Commentary on Science, Innovation & New Products with a focus on Oncology, Hematology & Cancer Immunotherapy

Posts tagged ‘New England Journal of Medicine’

Breaking news:

The New England Journal of Medicine have just published online the results of the Comparison of Age-related macular degeneration treatment trial (CATT) comparing the efficacy of FDA approved ranibizumab (Lucentis) to off-label bevacizumab (Avastin); a trial that has important commercial importance given the comparative costs of an intravitreal injection of around $1950 (Lucentis) vs. $50 (Avastin).

Key Study Results

Based on 1208 patients randomly assigned in the single-blind noninferiority trial, primary outcome was mean change in visual acuity between baseline and 1 year. This was equivalent between the two drugs.

Bevacizumab administered monthly was equivalent to ranibizumab administered monthly, with 8.0 and 8.5 letters gained, respectively.

Secondary outcome measures included the incidence of ocular and systemic side effects, the results show some similarities and differences:

Rates of death, myocardial infarction and stroke were similar for patients receiving either bevacizumab or ranibizumab (P>0.20).

The proportion of patients with serious adverse events (primarily hospitalization) was higher with bevacizumab than with ranibizumab (24.1% vs 19%)

The conclusion of the study is that:

At 1 year, bevacizumab and ranibizumab had equivalent effects on visual acuity when administered to the same schedule”

However, here is the potential ‘get out’ for Genentech:

Differences in rates of serious adverse events require further study.

The investigators note that the difference in serious adverse events may be due to:

“chance, imbalances in baseline health status that were not included in the medical history or multivariate models, or a true difference in risk.”

i.e. they don’t know.

What the results from the CATT study mean is that Avastin and Lucentis are similar, but different. That is not a surprising result given that they originate from the same anti-VEGF monoclonal antibody.  However, they are not identical.

Clearly, if I were a patient, the additional 5% risk of serious adverse events would have to be weighed against the cost benefits. For those who are uninsured or unable to afford Lucentis, receiving Avastin may be an informed decision worth taking.  As the investigators note:

One of the many factors that contribute to the selection of a drug for a patient is cost.  A single dose of ranibizumab costs 40 times as much as a single dose of bevacizumab.  This cost differential has important economic implications when extrapolated to the more than 250,000 patients who are treated for neovascular AMD annually in the United States.

I look forward to hearing the animated discussion of these results at the ARVO annual meeting in Fort Lauderdale on Sunday.

ResearchBlogging.orgThe CATT Research Group (2011). Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration New England Journal of Medicine DOI: 10.1056/NEJMoa1102673

1 Comment

I have a long-standing interest in hypoxia (lack of oxygen). Many years ago while completing my Masters degree in human physiology, I undertook research at the RAF Institute of Aviation Medicine at Farnborough on the effects of mild hypoxia on pilot performance.

So I was interested to read an article in the February 17, 2011 issue of the New England Journal of Medicine (NEJM) on hypoxia and inflammation, and how this influences disease.  Inflammation is one of my blog themes for 2011, and in a previous post, I wrote about how its ubiquitous role has been characterized as one of the “Insights of the Decade”.

In the NEJM article on mechanisms of disease, the authors Holger Eltzschig and Peter Carmeliet discuss the cross-talk between hypoxia and inflammation, and how this is implicated in cancer, infections and inflammatory bowel disease.

A lack of oxygen (hypoxia) is something that humans are acutely aware of.  We are all familiar with the flight/fight response that is designed to increase oxygen delivery to the brain and muscles.  Hypoxia can also lead to an inflammatory response.  The flip side is also true, where there is inflammation there is often local tissue hypoxia. An example of this is in solid tumors where the level of oxygen is considerably lower than in normal tissue.

The link between hypoxia and inflammation is regulated by the hypoxia-inducible transcription factor (HIF) that is activated by hypoxia. HIF has two subunits HIF-α (consisting of HIF-1α and HIF-2α) and HIF-β. The article goes into detail (beyond the scope of this blog post) about the interaction between HIF and the nuclear factor kappa-B (NF-κB ) transcription factor that regulates inflammation.

Elevated levels of HIF-1α and HIF-2α correlate with cancer deaths.  HIF-1 overexpression is associated with tumor growth, vascularization and metastasis. This has led to HIF-1 being evaluated as a target for anti-cancer drugs.

EZN-2968, a novel HIF-1α antagonist is in phase I clinical trials.  It is a joint development of two biopharmaceutical companies, Enzon in New Jersey and Santaris pharma in Denmark.

It will be interesting to see whether targeting hypoxia dependent signaling pathways will enable a clinically significant reduction in the inflammatory response.

Uveal melanoma is a common cancer of the eye that involves the iris, ciliary body and choroid.  It is a disease that hits 2000 people per year in the United States and is common in those over 50.  Standard treatment involves removal of the eye or radiotherapy. There is an unmet need for systemic drug therapy.

Mutations in the BRAF gene (a member of the Raf family that encodes a serine/threonine protein kinase) have been found in many skin melanomas.  In 80% of the cases, a single point mutation in exon 15 (T1799A) has been shown to occur.  Some new agents in development such as PLX4032, ipilumumab, GSK2118436 have shown promise in advanced skin melanoma, but research suggests that BRAF may not be the key to Uveal melanoma.

Henriquez et al, in a paper published in Investigative Ophthalmology & Visual Science showed that the T1799A BRAF mutation was only present in 9 of 19 iris melanoma tissue samples, but only in one case of uveal melanoma, suggesting differences in the genetic and clinical differences between the two.

Recently, two papers have been published that provide new insight into this intraocular cancer. In the December 2, 2010 issue of the New England Journal of Medicine, Van Raamsdonk et al, found mutations of either the GNAQ or GNA11 gene to be present in 83% of uveal melanomas that were sequenced (n=713).

Harbour et al, in the December 3, 2010 issue of Science reported findings of a frequent mutation of BAP1 in metastasizing uveal melanomas. They found that in 26 of 31 (84%) of uveal melanoma tumors they examined, there was a mutation of BAP1, the gene encoding BRCA1 associated protein 1 (BAP1) on chromose 3p21.1. The results published in Science, “implicate loss of BAP1 in uveal melanoma metastasis and suggest that BAP1 pathway may be a valuable therapeutic target.”

The data suggests that there may be multiple pathways involved in uveal melanoma.  It is promising to see translational medicine in action, with scientists seeking to understand the molecular basis of a disease so that targeted therapies can be developed.  Uveal melanoma only strikes a relatively small number of patients, but if a highly effective drug can be developed, this could be a market opportunity worth pursuing.

This week’s New England Journal of Medicine (NEJM) has an interesting paper (Teriparatide and Osseous Regeneration in the Oral Cavity) that caught my attention on the use of teriparatide (Eli Lilly, Forteo®) in patients with chronic peridontitis, a disease that affects one in five American adults.  The total market for periodontitis services and products is estimated to grow at 6.4% to 2016, when it will be worth $1,937 m.

Teriparatide is a recombinant form of parathyroid hormone (PTH) consisting of amino acids 1-34, and is used for the treatment of osteoporosis.  In the body, PTH is the hormone that regulates the level of calcium in the blood.  Low blood calcium causes increased PTH release. The use of teriparatide has been limited by the FDA due to the risk of osteosarcoma from long-term exposure.  However, what makes it an interesting compound is its ability to stimulate osteoblasts to build bone, which is why the results from the NEJM on peridontitis are perhaps not that surprising.

As Andrew Gray in his NEJM editorial comments, because teriparatide activates bone remodelling it may have a role to play in the management of osteonecrosis of the jaw (ONJ). ONJ is a particularly nasty side effect that many breast, multiple myeloma and prostate cancer patients experience following any dental work.

Badros et al, point out in their Journal of Clinical Oncology (JCO) paper, that bone disease effects 70% of multiple myeloma patients, many of whom take a bisphosphonate such as zoledronic acid (Novartis, Zometa®) to reduce the risk of skeletal related events (SRE). Unfortunately, a few patients subsequently end up with ONJ as a serious side effect! Clinical trial results showed that ONJ occurred with a similar frequency in breast cancer patients taking denosumab (Amgen, Prolia®) as compared to zoledronic acid.

One only has to read the patient commentary available on online forums such as breastcancer.org to realize the debilitating effect that ONJ has, not to mention the severe morbidity because of lack of delayed diagnosis and lack of effective treatments.

It is unclear whether the positive results from the NEJM in peridontitis will lead to clinical trials for the treatment of ONJ in cancer patients.  Although there is an unmet need, the market is small. In the meantime, I expect that doctors will be using teriparatide off-label to treat severe ONJ, which is less than ideal.

One biotech company banking on continued interest in Forteo® is Zelos Therapeutics, whose CEO, Dr Brian MacDonald is a fellow alumni of the University of Sheffield.  Zelos have a nasal spray formulation of teriparatide (ZT-034), which they hope will be equivalent to Ely Lilly’s product (that requires a daily injection).

Source: Zelos Therapeutics. In a press release earlier this year, Dr MacDonald commented:

“We believe that formulation of teriparatide as a nasal spray with comparable efficacy and safety to Forteo represents a simple, convenient approach to dosing that will make PTH therapy a better option for many more patients.”

Zelos’ product is currently in early stage clinical trials, so it will be interesting to see how this develops. The NDA is planned for 2012.  It is certainly a valid strategy for emerging biotechnology companies to take an existing marketed product and use a new drug delivery mechanism such as Aegis Therapeutics’ Intravail® drug delivery technology to expand the market.

error: Content is protected !!