At the annual AACR meeting last year, I wrote about an awesome piece of research from Meghna Das (NIBR) who looked at intermittent dosing of vemurafenib in animal models of BRAF driven melanoma and found that such an approach reduced resistance and improved outcomes.

GarrawayLeviMany of us are unlikely to forget the fascinating sequence of photos shown by Levi Garraway (Broad/MIT) two years earlier at the same conference, when he highlighted the before and after impact of vemurafenib therapy on a patient with advanced melanoma in glorious technicolour. Sadly, the subsequent photo six to nine months later showed that the lesions came back with a vengeance and the patient passed away.

Given that the disease is exquisitely sensitive to BRAF inhibitors, how can we improve this situation and overcome the resistance for future patients?

Das’s work was one of the highlights of that conference for me, since it involved creative thinking and a series of very well done, logical experiments that clearly showed an impact. The post drew a lot of ire and attention though, with many researchers emailing me to say they thought the idea was crazy and utterly against their understanding that you need to continually hit the target 24/7 or risk sudden relapse.  It drew as much surprised reaction as a related and controversial post on minimally effective dose, where I argued that we needed new approaches to hitting the target.

Today, it’s time for an update on this controversy – what happens when we go from bench to bedside and back again? What can we learn from an N of one that helps us figure out the optimal strategies for overcoming acquired resistance to TKI therapy?

Therapies mentioned: vemurafenib, dabrafenib, trametinib, cobimetinib

Companies mentioned: Roche/Genentech, Novartis, GSK, Exelixis

The story is truly a fascinating one.

To learn more insights on this intriguing topic, subscribers can log-in or you can purchase access to BSB Premium Content. 

This content is restricted to subscribers

Posted by