Biotech Strategy Blog

Commentary on Science, Innovation & New Products with a focus on Oncology, Hematology & Cancer Immunotherapy

Posts from the ‘Technology’ category

Detecting a door or a window may not be a big deal for all of us with normal vision, but for those who lose their sight, e.g. through retinitis pigmentosa (RP), a new “artificial retina” now provides hope of a better quality of life.

The Argus™ II Retinal Prosthesis System from California based company Second Sight, has just received CE marking.  This innovative device can now be sold and marketed within Europe, but it remains investigational in the United States. It is the first such device to be approved.

While this blog is mainly focused on the biotechnology industry, I’m very interested in innovation and bringing novel products to market. I also have a personal interest in the ophthalmology market.  Earlier in my career, I spent three years at Alcon working with leading European ophthalmologists on intra-ocular lens clinical trials, including the IDE registration trial for AcrySof®.

In the same way that a cochlear implant does not restore hearing, the “artificial retina” or so-called “bionic eye” from Second Sight is not intended to restore vision, instead it artificially provides electrical signals that it is hoped the brain can learn to interpret as shapes.

The “artificial retina” has three parts, a small video camera worn in a pair of glasses that captures visual images.  This transmits the electronic images to a video processing unit worn by the patient.  Data is then transmitted wirelessly to an implant that is located on top of the retina.

The array of electrodes resting on the retina stimulates those rods and cones that remain functional to generate electrical impulses that are then transmitted down the optic nerve to the brain.  Patients learn to interpret the patterns of light that are generated, and in the process gain some sense of visual perception that improves their daily life.

In an interview broadcast on French radio station, RTL one of the four French patients in the clinical trial, Thierry, talks about how this retinal stimulation device has improved his autonomy and quality of life.

When faced with blindness, any progress is noteworthy and it will be interesting to see the extent to which this technology can be further developed.  I expect that more clinical trial data will be forthcoming at the annual meeting of ARVO (Association for Research in Vision and Ophthalmology) in May.

Update August 23, 2012:  FDA Panel to review whether to recommend of approval of Argus II artificial retina in the United States

The FDA Ophthalmic Devices Panel will review on September 28, 2012 the Humanitarian Device Exemption (HDE) market approval application by Second Sight for its Argus II Retinal Prosthesis System with an indication for patients with severe to profound retinitis pigmentosa (RP) who have bare or no light perception in both eyes.

What is a Humanitarian Device Exemption? 

“An HDE is similar in both form and content to a premarket approval (PMA) application, but is exempt from the effectiveness requirements of a PMA. An HDE application is not required to contain the results of scientifically valid clinical investigations demonstrating that the device is effective for its intended purpose. The application, however, must contain sufficient information for FDA to determine that the device does not pose an unreasonable or significant risk of illness or injury, and that the probable benefit to health outweighs the risk of injury or illness from its use, taking into account the probable risks and benefits of currently available devices or alternative forms of treatment.”  U.S. Food & Drug Administration

Given the lower standard required for a HDE, and the fact that Second Sight obtained a CE mark in Europe, it would be hard to believe the FDA advisory panel will not recommend approval in a patient population that are effectively blind.

However, the FDA guidance also notes that an approval of an HDE, while allowing marketing of the device, does require it’s use to be at facilities where an institutional review board (IRB) has approved the use of the device. If approved for sale in the US, the market for Second Sight will be limited as a result to academic and hospital settings that have an IRB able to provide the necessary oversight and review.

“An approved HDE authorizes marketing of the HUD. However, an HUD may only be used in facilities that have established a local institutional review board (IRB) to supervise clinical testing of devices and after an IRB has approved the use of the device to treat or diagnose the specific disease. The labeling for an HUD must state that the device is an humanitarian use device and that, although the device is authorized by Federal Law, the effectiveness of the device for the specific indication has not been demonstrated.”

For those interested in more information, background material on the HDE application will be available on the FDA website no later than 2 days prior to the September 28 meeting of the Ophthalmic Devices Panel of the Medical Devices Advisory Committee.

2 Comments

That is the interesting question that struck me after reading Sam Kean’s informative article in the February 4 edition of Science.  Ten years on from the sequencing of the Human Genome, the patenting of human genetic information presents unique challenges at the interface of science, law and innovation.

Researchers have obtained patents for isolating different sections of DNA that occur naturally in our bodies.  Whether this should be permitted is still open to debate. Currently, diagnostic companies who want to launch a new cancer test face the challenge that patents now cover many genes.

The Science article cites start-up Foundation Medicine in Cambridge, MA who estimated the cost of investigating possible patent infringement for a new diagnostic test at $35M, a cost that exceeded the company’s $25M of VC funding.

Add in the costs of any royalties or licensing fees and the issue of prior patents is now a nightmare for any diagnostics company.  It is simply not practical to license every gene that may be implicated in a multifactorial disease such as diabetes.  Pre-existing patents have become a barrier to market entry.

As the Science article reports, gene patents cover not only very small snips of DNA, as short as 15 nucleotides, but can prohibit the sequencing of associated DNA. Companies such as 23andMe that sequence an individual’s genome to test for the presence of certain genes may be violating patent rights of others.

What’s more so called “method” patents cover the linking of a gene sequence with a specific medical condition.

As advances in personalized medicine continue, there is a need to balance the competing interests of protecting scientific discovery and rewarding innovation, while at the same time allowing access to human genetic information that many think should be “free to all men and reserved exclusively to none.” Quotation from Bilski v. Kappos, 130 S.Ct. 3218, 3225 (2010)

A law suit currently on appeal to the US Court of Appeals for the Federal Circuit may lead to a change in the current practices of the US Patent & Trademark Office.  The American Association of Pathologists and others have challenged several patents relating to the breast cancer genes BRCA1 and BRAC2 held by Myriad Genetics and the University of Utah Research Foundation.

BRCA1 and BRCA2 genes are associated with an increased risk of breast and ovarian cancer.  The US district court for the Southern District of New York in a surprise decision by Judge Robert Sweet, invalidated Myriad’s patents.  The New York Times article about the case has a link to the Judge’s 156 page opinion.  The decision that isolated but otherwise unaltered DNA should not be patentable is now being appealed by Myriad.

In their legal brief, arguing for the decision to be upheld, the United States Government states:

“The fact that a particular segment of the human genome codes for the BRCA1 protein in a human cell, for example, rather than for adrenaline or insulin or nothing at all, is not within the power of science to alter. Such basic natural relationships may not be the subject of a patent.”

If the District Court’s decision is upheld on appeal, it would represent a fundamental policy shift on what patents can be obtained for human genetic information. Such a decision would prevent Myriad from charging royalties and exclusivity for the genetic testing of BRCA1 and potentially invalidate similar types of patents. Depending on your point of view this will either harm the biotechnology industry or increase the market opportunities.

Given the stakes involved, it is likely the Myriad case will end up being considered by the United States Supreme Court, and what they may decide is anyone’s guess.

To read more in-depth analysis about the Myriad case and the legal issues involved with the patenting of genomic information, I strongly recommend the “Genomics Law Report”, a blog written by Dan Vorhaus and others.

Ten years after the human genome was sequenced we are still working out the intellectual property rights. The question as to whether companies should be allowed to patent unaltered human genes is one that will be answered in the not too distant future.

After I wrote my previous blog post about the emerging biotechnology region around Austin, TX, one of the comments I received was about the importance of networking opportunities within a cluster or region.

So I am pleased to have been invited to a medical technology-life science networking event in New York City (NYC) organized six times a year by Ted King of Saddlerock Advisors, Wendy Brown of Merrill Lynch and John Lieberman of Perelson Weiner.

The event, later today, has a format of a featured speaker and presentations by three emerging companies that provides them with the opportunity to network and showcase their technology, new drugs or medical devices to investors, industry partners, academics and researchers.

This evening there is a presentation on the proposed changes to the FDA’s 510(k) clearance process for medical device approval.  This is the route by which the majority of medical devices come to market by showing they are comparable to an existing approved or marketed product.

The three featured companies include BioView (an Israeli technology company involved in cell imaging and automation of genetic testing), Cel-Sci (a Virginia based biotech company that has as immunotherapy product in development about to enter a global phase III clinical trial in head and neck cancer) and PatienTech (a company that develops elastic-sheet, pressure sensing systems that can be used with medical devices).

It will be interesting to see who attends, and whether the presentations by the companies are what I consider to be the typical investor “puff and fluff” presentations, or whether there is any meaningful discussion of science, marketing strategy and new product development.

Following on from my blog post last week that discussed the use of iPads and other tablet computers in clinical trials, MIM Software have just received FDA 510(k) clearance to market their iPhone and iPad medical imaging app in the United States. This is the first such approval by the FDA, and the app will be sold in Apple’s itunes store.

This new mobile radiology application will allow physicians to review medical images on their iPhone and iPad.  The FDA in their press release indicate that it is not intended to replace full work stations, but to provide the ability to view images and make diagnoses when a workstation is not readily available.

The FDA reviewed luminance, image resolution quality, and results from demonstration studies with radiologists that showed that images could be safely interpreted for diagnostic purposes under appropriate lighting conditions.

What is more, using software from MIM, the images can be further analyzed and distance measurements made.

The ability to have wireless access to medical images will be particularly useful to physicians working remotely, in emergency situations and in clinical trial networks where the central imaging review facility may not be local.

As the screen resolution of iPad’s and other tablet computers increases, perhaps we will see advanced visualization software available on the iPad?  It is certainly an area where innovation is taking place, and one that I think will impact clinical research in the biotechnology industry before too long.

error: Content is protected !!